Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Clin Infect Dis ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238063

ABSTRACT

INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.

2.
CHEST Critical Care ; : 100002, 2023.
Article in English | ScienceDirect | ID: covidwho-2309458

ABSTRACT

Background Cardiac function of critically ill patients with COVID-19 generally has been reported from clinically obtained data. Echocardiographic deformation imaging can identify ventricular dysfunction missed by traditional echocardiographic assessment. Research Question What is the prevalence of ventricular dysfunction and what are its implications for the natural history of critical COVID-19? Study Design and Methods This is a multicenter prospective cohort of critically ill patients with COVID-19. We performed serial echocardiography and lower extremity vascular ultrasound on hospitalization days 1, 3, and 8. We defined left ventricular (LV) dysfunction as the absolute value of longitudinal strain of < 17% or LV ejection fraction (LVEF) of < 50%. Primary clinical outcome was inpatient survival. Results We enrolled 110 patients. Thirty-nine (35.5%) died before hospital discharge. LV dysfunction was present at admission in 38 patients (34.5%) and in 21 patients (36.2%) on day 8 (P = .59). Median baseline LVEF was 62% (interquartile range [IQR], 52%-69%), whereas median absolute value of baseline LV strain was 16% (IQR, 14%-19%). Survivors and nonsurvivors did not differ statistically significantly with respect to day 1 LV strain (17.9% vs 14.4%;P = .12) or day 1 LVEF (60.5% vs 65%;P = .06). Nonsurvivors showed worse day 1 right ventricle (RV) strain than survivors (16.3% vs 21.2%;P = .04). Interpretation Among patients with critical COVID-19, LV and RV dysfunction is common, frequently identified only through deformation imaging, and early (day 1) RV dysfunction may be associated with clinical outcome.

3.
Clin Infect Dis ; 76(8): 1358-1363, 2023 04 17.
Article in English | MEDLINE | ID: covidwho-2302049

ABSTRACT

BACKGROUND: In the United States, influenza activity during the 2021-2022 season was modest and sufficient enough to estimate influenza vaccine effectiveness (VE) for the first time since the beginning of the coronavirus disease 2019 pandemic. We estimated influenza VE against laboratory-confirmed outpatient acute illness caused by predominant A(H3N2) viruses. METHODS: Between October 2021 and April 2022, research staff across 7 sites enrolled patients aged ≥6 months seeking outpatient care for acute respiratory illness with cough. Using a test-negative design, we assessed VE against influenza A(H3N2). Due to strong correlation between influenza and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination, participants who tested positive for SARS-CoV-2 were excluded from VE estimations. Estimates were adjusted for site, age, month of illness, race/ethnicity, and general health status. RESULTS: Among 6260 participants, 468 (7%) tested positive for influenza only, including 440 (94%) for A(H3N2). All 206 sequenced A(H3N2) viruses were characterized as belonging to genetic group 3C.2a1b subclade 2a.2, which has antigenic differences from the 2021-2022 season A(H3N2) vaccine component that belongs to clade 3C.2a1b subclade 2a.1. After excluding 1948 SARS-CoV-2-positive patients, 4312 patients were included in analyses of influenza VE; 2463 (57%) were vaccinated against influenza. Effectiveness against A(H3N2) for all ages was 36% (95% confidence interval, 20%-49%) overall. CONCLUSIONS: Influenza vaccination in 2021-2022 provided protection against influenza A(H3N2)-related outpatient visits among young persons.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , United States/epidemiology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Influenza A Virus, H3N2 Subtype , Seasons , Vaccine Efficacy , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Influenza B virus
4.
Pediatr Infect Dis J ; 42(6): e190-e196, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2288273

ABSTRACT

BACKGROUND: In a 2020 pilot case-control study using medical records, we reported that non-Hispanic Black children were more likely to develop multisystem inflammatory syndrome in children (MIS-C) after adjustment for sociodemographic factors and underlying medical conditions. Using structured interviews, we investigated patient, household, and community factors underlying MIS-C likelihood. METHODS: MIS-C case patients hospitalized in 2021 across 14 US pediatric hospitals were matched by age and site to outpatient controls testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within 3 months of the admission date. Caregiver interviews queried race/ethnicity, medical history, and household and potential community exposures 1 month before MIS-C hospitalization (case-patients) or after SARS-CoV-2 infection (controls). We calculated adjusted odds ratios (aOR) using mixed-effects multivariable logistic regression. RESULTS: Among 275 case patients and 496 controls, race/ethnicity, social vulnerability and patient or family history of autoimmune/rheumatologic disease were not associated with MIS-C. In previously healthy children, MIS-C was associated with a history of hospitalization for an infection [aOR: 4.8; 95% confidence interval (CI): 2.1-11.0]. Household crowding (aOR: 1.7; 95% CI: 1.2-2.6), large event attendance (aOR: 1.7; 95% CI: 1.3-2.1), school attendance with limited masking (aOR: 2.6; 95% CI: 1.1-6.6), public transit use (aOR: 1.8; 95% CI: 1.4-2.4) and co-resident testing positive for SARS-CoV-2 (aOR: 2.2; 95% CI: 1.3-3.7) were associated with increased MIS-C likelihood, with risk increasing with the number of these factors. CONCLUSIONS: From caregiver interviews, we clarify household and community exposures associated with MIS-C; however, we did not confirm prior associations between sociodemographic factors and MIS-C.


Subject(s)
COVID-19 , Child , Humans , COVID-19/epidemiology , SARS-CoV-2 , Case-Control Studies , Crowding , Family Characteristics , Systemic Inflammatory Response Syndrome/epidemiology , Risk Factors
5.
Pediatr Crit Care Med ; 24(5): 356-371, 2023 05 01.
Article in English | MEDLINE | ID: covidwho-2251768

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) has been used successfully to support adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related cardiac or respiratory failure refractory to conventional therapies. Comprehensive reports of children and adolescents with SARS-CoV-2-related ECMO support for conditions, including multisystem inflammatory syndrome in children (MIS-C) and acute COVID-19, are needed. DESIGN: Case series of patients from the Overcoming COVID-19 public health surveillance registry. SETTING: Sixty-three hospitals in 32 U.S. states reporting to the registry between March 15, 2020, and December 31, 2021. PATIENTS: Patients less than 21 years admitted to the ICU meeting Centers for Disease Control criteria for MIS-C or acute COVID-19. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: The final cohort included 2,733 patients with MIS-C ( n = 1,530; 37 [2.4%] requiring ECMO) or acute COVID-19 ( n = 1,203; 71 [5.9%] requiring ECMO). ECMO patients in both groups were older than those without ECMO support (MIS-C median 15.4 vs 9.9 yr; acute COVID-19 median 15.3 vs 13.6 yr). The body mass index percentile was similar in the MIS-C ECMO versus no ECMO groups (89.9 vs 85.8; p = 0.22) but higher in the COVID-19 ECMO versus no ECMO groups (98.3 vs 96.5; p = 0.03). Patients on ECMO with MIS-C versus COVID-19 were supported more often with venoarterial ECMO (92% vs 41%) for primary cardiac indications (87% vs 23%), had ECMO initiated earlier (median 1 vs 5 d from hospitalization), shorter ECMO courses (median 3.9 vs 14 d), shorter hospital length of stay (median 20 vs 52 d), lower in-hospital mortality (27% vs 37%), and less major morbidity at discharge in survivors (new tracheostomy, oxygen or mechanical ventilation need or neurologic deficit; 0% vs 11%, 0% vs 20%, and 8% vs 15%, respectively). Most patients with MIS-C requiring ECMO support (87%) were admitted during the pre-Delta (variant B.1.617.2) period, while most patients with acute COVID-19 requiring ECMO support (70%) were admitted during the Delta variant period. CONCLUSIONS: ECMO support for SARS-CoV-2-related critical illness was uncommon, but type, initiation, and duration of ECMO use in MIS-C and acute COVID-19 were markedly different. Like pre-pandemic pediatric ECMO cohorts, most patients survived to hospital discharge.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Adult , Humans , Child , Adolescent , COVID-19/therapy , SARS-CoV-2 , Hospitalization , Intensive Care Units , Retrospective Studies
6.
Clin Infect Dis ; 2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2283784

ABSTRACT

BACKGROUND: The COVID-19 pandemic was associated with historically low influenza circulation during the 2020-2021 season, followed by increase in influenza circulation during the 2021-2022 US season. The 2a.2 subgroup of the influenza A(H3N2) 3C.2a1b subclade that predominated was antigenically different from the vaccine strain. METHODS: To understand the effectiveness of the 2021-2022 vaccine against hospitalized influenza illness, a multi-state sentinel surveillance network enrolled adults aged ≥18 years hospitalized with acute respiratory illness (ARI) and tested for influenza by a molecular assay. Using the test-negative design, vaccine effectiveness (VE) was measured by comparing the odds of current season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative controls, adjusting for confounders. A separate analysis was performed to illustrate bias introduced by including SARS-CoV-2 positive controls. RESULTS: A total of 2334 patients, including 295 influenza cases (47% vaccinated), 1175 influenza- and SARS-CoV-2 negative controls (53% vaccinated), and 864 influenza-negative and SARS-CoV-2 positive controls (49% vaccinated), were analyzed. Influenza VE was 26% (95%CI: -14 to 52%) among adults aged 18-64 years, -3% (95%CI: -54 to 31%) among adults aged ≥65 years, and 50% (95%CI: 15 to 71%) among adults 18-64 years without immunocompromising conditions. Estimated VE decreased with inclusion of SARS-CoV-2-positive controls. CONCLUSIONS: During a season where influenza A(H3N2) was antigenically different from the vaccine virus, vaccination was associated with a reduced risk of influenza hospitalization in younger immunocompetent adults. However, vaccination did not provide protection in adults ≥65 years of age. Improvements in vaccines, antivirals, and prevention strategies are warranted.

7.
Clin Infect Dis ; 2022 Aug 04.
Article in English | MEDLINE | ID: covidwho-2237414

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C), linked to antecedent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is associated with considerable morbidity. Prevention of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) by vaccination might also decrease MIS-C likelihood. METHODS: In a multicenter case-control public health investigation of children ages 5-18 years hospitalized from July 1, 2021 to April 7, 2022, we compared the odds of being fully vaccinated (two doses of BNT162b2 vaccine ≥28 days before hospital admission) between MIS-C case-patients and hospital-based controls who tested negative for SARS-CoV-2. These associations were examined by age group, timing of vaccination, and periods of Delta and Omicron variant predominance using multivariable logistic regression. RESULTS: We compared 304 MIS-C case-patients (280 [92%] unvaccinated) with 502 controls (346 [69%] unvaccinated). MIS-C was associated with decreased likelihood of vaccination (aOR, 0.16 95% CI, 0.10-0.26), including among children ages 5-11 years (aOR, 0.22 95% CI, 0.10-0.52), ages 12-18 years (aOR, 0.10 95% CI, 0.05-0.19), and during the Delta (aOR, 0.06 95% CI, 0.02-0.15) and Omicron (aOR, 0.22 95% CI, 0.11-0.42) variant-predominant periods. This association persisted beyond 120 days after the second dose (aOR, 0.08, 95% CI, 0.03-0.22) in 12-18 year-olds. Among all MIS-C case-patients, 187 (62%) required intensive care unit admission and 280 (92%) vaccine-eligible patients were unvaccinated. CONCLUSIONS: Vaccination with two doses of BNT162b2 is associated with reduced likelihood of MIS-C in children ages 5-18 years. Most vaccine eligible hospitalized patients with MIS-C were unvaccinated.

8.
J Pediatric Infect Dis Soc ; 2022 Oct 30.
Article in English | MEDLINE | ID: covidwho-2235140

ABSTRACT

BACKGROUND: Pfizer-BioNTech COVID-19 vaccine received emergency use authorization for persons ≥16 years in December 2020 and for adolescents 12-15 years in May 2021. Despite the clear benefits and favorable safety profile, vaccine uptake in adolescents has been suboptimal. We sought to assess factors associated with COVID-19 non-vaccination in adolescents 12-18 years of age. METHODS: Between June 1, 2021 and April 29, 2022, we assessed factors associated with COVID-19 non-vaccination in hospitalized adolescents ages 12-18 years enrolled in the Overcoming COVID-19 vaccine effectiveness network. Demographic characteristics and clinical information were captured through parent interview and/or electronic medical record abstraction; COVID-19 vaccination was assessed through documented sources. We assessed associations between receipt of COVID-19 vaccine and demographic and clinical factors using univariate and multivariable logistic regression and estimated adjusted odds ratios (aOR) for each factor associated with non-vaccination. RESULTS: Among 1,665 hospitalized adolescents without COVID-19, 56% were unvaccinated. Unvaccinated adolescents were younger (median age 15.1 years vs. 15.4 years, p<0.01) and resided in areas with higher social vulnerability index (SVI) scores (median 0.6 vs 0.5, p<0.001) than vaccinated adolescents. Residence in the Midwest [aOR 2.60 (95% CI: 1.80, 3.79)] or South [aOR 2.49 (95% CI: 1.77, 3.54)] US census regions, rarely or never receiving influenza vaccine [aOR 5.31 (95% CI: 3.81, 7.47)], and rarely or never taking precautions against COVID-19 [aOR 3.17 (95% CI: 1.94, 5.31)] were associated with non-vaccination against COVID-19. CONCLUSIONS: Efforts to increase COVID-19 vaccination of adolescents should focus on persons with geographic, socioeconomic, and medical risk factors associated with non-vaccination.

9.
Clin Infect Dis ; 2022 Jun 19.
Article in English | MEDLINE | ID: covidwho-2230704

ABSTRACT

BACKGROUND: Clinical differences between critical illness from influenza infection versus coronavirus disease 2019 (COVID-19) have not been well characterized in pediatric patients. METHODS: We compared U.S. children (8 months to 17 years) admitted to the intensive care or high acuity unit with influenza (17 hospitals, 12/19/2019-3/9/2020) or COVID-19 (52 hospitals, 3/15/2020-12/31/2020). We compared demographics, underlying conditions, clinical presentation, severity, and outcomes. Using mixed-effects models, we assessed the odds of death or requiring life-support for influenza versus COVID-19 after adjustment for age, sex, race and Hispanic origin, and underlying conditions including obesity. RESULTS: Children with influenza (n = 179) were younger than those with COVID-19 (n = 381; median 5.2 vs. 13.8 years), less likely to be non-Hispanic black (14.5% vs. 27.6%) or Hispanic (24.0% vs. 36.2%), and less likely to have ≥1 underlying condition (66.4% vs. 78.5%) or be obese (21.4% vs. 42.2%). They were similarly likely to require invasive mechanical ventilation (both 30.2%), vasopressor support (19.6% and 19.9%), or extracorporeal membrane oxygenation (2.2% and 2.9%). Four children with influenza (2.2%) and 11 children with COVID-19 (2.9%) died. The odds of death or requiring life-support in children with influenza vs. COVID-19 were similar (adjusted odds ratio, 1.30 [95% CI: 0.78-2.15; P = 0.32]). Median duration of hospital stay was shorter for influenza than COVID-19 (5 versus 7 days). CONCLUSIONS: Despite differences in demographics and clinical characteristics of children with influenza or COVID-19, the frequency of life-threatening complications was similar. Our findings highlight the importance of implementing prevention measures to reduce transmission and disease severity of influenza and COVID-19.

10.
J Am Heart Assoc ; 11(20): e025915, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2138319

ABSTRACT

Background Cardiac complications related to COVID-19 in children and adolescents include ventricular dysfunction, myocarditis, coronary artery aneurysm, and bradyarrhythmias, but tachyarrhythmias are less understood. The goal of this study was to evaluate the frequency, characteristics, and outcomes of children and adolescents experiencing tachyarrhythmias while hospitalized for acute severe COVID-19 or multisystem inflammatory syndrome in children. Methods and Results This study involved a case series of 63 patients with tachyarrhythmias reported in a public health surveillance registry of patients aged <21 years hospitalized from March 15, 2020, to December 31, 2021, at 63 US hospitals. Patients with tachyarrhythmias were compared with patients with severe COVID-19-related complications without tachyarrhythmias. Tachyarrhythmias were reported in 22 of 1257 patients (1.8%) with acute COVID-19 and 41 of 2343 (1.7%) patients with multisystem inflammatory syndrome in children. They included supraventricular tachycardia in 28 (44%), accelerated junctional rhythm in 9 (14%), and ventricular tachycardia in 38 (60%); >1 type was reported in 12 (19%). Registry patients with versus without tachyarrhythmia were older (median age, 15.4 [range, 10.4-17.4] versus 10.0 [range, 5.4-14.8] years) and had higher illness severity on hospital admission. Intervention for treatment of tachyarrhythmia was required in 37 (59%) patients and included antiarrhythmic medication (n=31, 49%), electrical cardioversion (n=11, 17%), cardiopulmonary resuscitation (n=8, 13%), and extracorporeal membrane oxygenation (n=9, 14%). Patients with tachyarrhythmias had longer hospital length of stay than those who did not, and 9 (14%) versus 77 (2%) died. Conclusions Tachyarrhythmias were a rare complication of acute severe COVID-19 and multisystem inflammatory syndrome in children and adolescents and were associated with worse clinical outcomes, highlighting the importance of close monitoring, aggressive treatment, and postdischarge care.


Subject(s)
COVID-19 , Tachycardia, Supraventricular , Child , Humans , Adolescent , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Aftercare , Patient Discharge , Hospitalization , Tachycardia, Supraventricular/epidemiology , Arrhythmias, Cardiac/epidemiology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/therapy
11.
JAMA Netw Open ; 5(11): e2241622, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2117818

ABSTRACT

Importance: Minimal data are available regarding the postdischarge treatment of multisystem inflammatory syndrome in children (MIS-C). Objectives: To evaluate clinical characteristics associated with duration of postdischarge glucocorticoid use and assess postdischarge clinical course, laboratory test result trajectories, and adverse events in a multicenter cohort with MIS-C. Design, Setting, and Participants: This retrospective cohort study included patients with MIS-C hospitalized with severe illness and followed up for 3 months in an ambulatory setting. Patients younger than 21 years who were admitted between May 15, 2020, and May 31, 2021, at 13 US hospitals were included. Inclusion criteria were inpatient treatment comprising intravenous immunoglobulin, diagnosis of cardiovascular dysfunction (vasopressor requirement or left ventricular ejection fraction ≤55%), and availability of complete outpatient data for 3 months. Exposures: Glucocorticoid treatment. Main Outcomes and Measures: Main outcomes were patient characteristics associated with postdischarge glucocorticoid treatment, laboratory test result trajectories, and adverse events. Multivariable regression was used to evaluate factors associated with postdischarge weight gain (≥2 kg in 3 months) and hyperglycemia during illness. Results: Among 186 patients, the median age was 10.4 years (IQR, 6.7-14.2 years); most were male (107 [57.5%]), Black non-Hispanic (60 [32.3%]), and Hispanic or Latino (59 [31.7%]). Most children were critically ill (intensive care unit admission, 163 [87.6%]; vasopressor receipt, 134 [72.0%]) and received inpatient glucocorticoid treatment (178 [95.7%]). Most were discharged with continued glucocorticoid treatment (173 [93.0%]); median discharge dose was 42 mg/d (IQR, 30-60 mg/d) or 1.1 mg/kg/d (IQR, 0.7-1.7 mg/kg/d). Inpatient severity of illness was not associated with duration of postdischarge glucocorticoid treatment. Outpatient treatment duration varied (median, 23 days; IQR, 15-32 days). Time to normalization of C-reactive protein and ferritin levels was similar for glucocorticoid duration of less than 3 weeks vs 3 or more weeks. Readmission occurred in 7 patients (3.8%); none was for cardiovascular dysfunction. Hyperglycemia developed in 14 patients (8.1%). Seventy-five patients (43%) gained 2 kg or more after discharge (median 4.1 kg; IQR, 3.0-6.0 kg). Inpatient high-dose intravenous and oral glucocorticoid therapy was associated with postdischarge weight gain (adjusted odds ratio, 6.91; 95% CI, 1.92-24.91). Conclusions and Relevance: In this multicenter cohort of patients with MIS-C and cardiovascular dysfunction, postdischarge glucocorticoid treatment was often prolonged, but clinical outcomes were similar in patients prescribed shorter courses. Outpatient weight gain was common. Readmission was infrequent, with none for cardiovascular dysfunction. These findings suggest that strategies are needed to optimize postdischarge glucocorticoid courses for patients with MIS-C.


Subject(s)
Hyperglycemia , Pneumonia, Viral , Child , Humans , Male , Female , Pneumonia, Viral/epidemiology , Pandemics , Patient Discharge , Glucocorticoids/therapeutic use , Retrospective Studies , Stroke Volume , Aftercare , Ventricular Function, Left , Weight Gain
14.
BMJ ; 379: e072065, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2064091

ABSTRACT

OBJECTIVE: To compare the effectiveness of a primary covid-19 vaccine series plus booster doses with a primary series alone for the prevention of hospital admission with omicron related covid-19 in the United States. DESIGN: Multicenter observational case-control study with a test negative design. SETTING: Hospitals in 18 US states. PARTICIPANTS: 4760 adults admitted to one of 21 hospitals with acute respiratory symptoms between 26 December 2021 and 30 June 2022, a period when the omicron variant was dominant. Participants included 2385 (50.1%) patients with laboratory confirmed covid-19 (cases) and 2375 (49.9%) patients who tested negative for SARS-CoV-2 (controls). MAIN OUTCOME MEASURES: The main outcome was vaccine effectiveness against hospital admission with covid-19 for a primary series plus booster doses and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. Vaccine effectiveness analyses were stratified by immunosuppression status (immunocompetent, immunocompromised). The primary analysis evaluated all covid-19 vaccine types combined, and secondary analyses evaluated specific vaccine products. RESULTS: Overall, median age of participants was 64 years (interquartile range 52-75 years), 994 (20.8%) were immunocompromised, 85 (1.8%) were vaccinated with a primary series plus two boosters, 1367 (28.7%) with a primary series plus one booster, and 1875 (39.3%) with a primary series alone, and 1433 (30.1%) were unvaccinated. Among immunocompetent participants, vaccine effectiveness for prevention of hospital admission with omicron related covid-19 for a primary series plus two boosters was 63% (95% confidence interval 37% to 78%), a primary series plus one booster was 65% (58% to 71%), and for a primary series alone was 37% (25% to 47%) (P<0.001 for the pooled boosted regimens compared with a primary series alone). Vaccine effectiveness was higher for a boosted regimen than for a primary series alone for both mRNA vaccines (BNT162b2 (Pfizer-BioNTech): 73% (44% to 87%) for primary series plus two boosters, 64% (55% to 72%) for primary series plus one booster, and 36% (21% to 48%) for primary series alone (P<0.001); mRNA-1273 (Moderna): 68% (17% to 88%) for primary series plus two boosters, 65% (55% to 73%) for primary series plus one booster, and 41% (25% to 54%) for primary series alone (P=0.001)). Among immunocompromised patients, vaccine effectiveness for a primary series plus one booster was 69% (31% to 86%) and for a primary series alone was 49% (30% to 63%) (P=0.04). CONCLUSION: During the first six months of 2022 in the US, booster doses of a covid-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing hospital admissions with omicron related covid-19. READERS' NOTE: This article is a living test negative design study that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Hospitals , Humans , Middle Aged , SARS-CoV-2 , United States/epidemiology , Vaccine Efficacy
15.
Pediatr Infect Dis J ; 41(11): 891-898, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-2029114

ABSTRACT

BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a postinfectious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related complication that has disproportionately affected racial/ethnic minority children. We conducted a pilot study to investigate risk factors for MIS-C aiming to understand MIS-C disparities. METHODS: This case-control study included MIS-C cases and SARS-CoV-2-positive outpatient controls less than 18 years old frequency-matched 4:1 to cases by age group and site. Patients hospitalized with MIS-C were admitted between March 16 and October 2, 2020, across 17 pediatric hospitals. We evaluated race, ethnicity, social vulnerability index (SVI), insurance status, weight-for-age and underlying medical conditions as risk factors using mixed effects multivariable logistic regression. RESULTS: We compared 241 MIS-C cases with 817 outpatient SARS-CoV-2-positive at-risk controls. Cases and controls had similar sex, age and U.S. census region distribution. MIS-C patients were more frequently previously healthy, non-Hispanic Black, residing in higher SVI areas, and in the 95th percentile or higher for weight-for-age. In the multivariable analysis, the likelihood of MIS-C was higher among non-Hispanic Black children [adjusted odds ratio (aOR): 2.07; 95% CI: 1.23-3.48]. Additionally, SVI in the 2nd and 3rd tertiles (aOR: 1.88; 95% CI: 1.18-2.97 and aOR: 2.03; 95% CI: 1.19-3.47, respectively) were independent factors along with being previously healthy (aOR: 1.64; 95% CI: 1.18-2.28). CONCLUSIONS: In this study, non-Hispanic Black children were more likely to develop MIS-C after adjustment for sociodemographic factors, underlying medical conditions, and weight-for-age. Investigation of the potential contribution of immunologic, environmental, and other factors is warranted.


Subject(s)
COVID-19 , Adolescent , COVID-19/complications , COVID-19/epidemiology , Case-Control Studies , Child , Ethnicity , Humans , Minority Groups , Pilot Projects , SARS-CoV-2 , Systemic Inflammatory Response Syndrome/epidemiology
16.
medRxiv ; 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1978307

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11 - May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1210 participants, median age was 58 years, 22.8% were Black, 13.8% were Hispanic, and 20.6% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 was most common variant (59.7% of sequenced viruses). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 45/590 (7.6%) cases and 215/620 (34.7%) controls. Overall vaccine effectiveness was 86.9% (95% CI: 80.4 to 91.2%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.3%; 95% CI: 78.9 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (59.2%; 95% CI: 11.9 to 81.1%) than without immunosuppression (91.3%; 95% CI: 85.5 to 94.7%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

17.
Influenza Other Respir Viruses ; 16(6): 975-985, 2022 11.
Article in English | MEDLINE | ID: covidwho-1968142

ABSTRACT

Background: We estimated SARS-CoV-2 Delta- and Omicron-specific effectiveness of two and three mRNA COVID-19 vaccine doses in adults against symptomatic illness in US outpatient settings. Methods: Between October 1, 2021, and February 12, 2022, research staff consented and enrolled eligible participants who had fever, cough, or loss of taste or smell and sought outpatient medical care or clinical SARS-CoV-2 testing within 10 days of illness onset. Using the test-negative design, we compared the odds of receiving two or three mRNA COVID-19 vaccine doses among SARS-CoV-2 cases versus controls using logistic regression. Regression models were adjusted for study site, age, onset week, and prior SARS-CoV-2 infection. Vaccine effectiveness (VE) was calculated as (1 - adjusted odds ratio) × 100%. Results: Among 3847 participants included for analysis, 574 (32%) of 1775 tested positive for SARS-CoV-2 during the Delta predominant period and 1006 (56%) of 1794 participants tested positive during the Omicron predominant period. When Delta predominated, VE against symptomatic illness in outpatient settings was 63% (95% CI: 51% to 72%) among mRNA two-dose recipients and 96% (95% CI: 93% to 98%) for three-dose recipients. When Omicron predominated, VE was 21% (95% CI: -6% to 41%) among two-dose recipients and 62% (95% CI: 48% to 72%) among three-dose recipients. Conclusions: In this adult population, three mRNA COVID-19 vaccine doses provided substantial protection against symptomatic illness in outpatient settings when the Omicron variant became the predominant cause of COVID-19 in the United States. These findings support the recommendation for a third mRNA COVID-19 vaccine dose.


Subject(s)
COVID-19 , Outpatients , Adult , Humans , COVID-19 Testing , COVID-19 Vaccines , COVID-19/prevention & control , SARS-CoV-2/genetics , RNA, Messenger/genetics
18.
Influenza Other Respir Viruses ; 16(6): 1101-1111, 2022 11.
Article in English | MEDLINE | ID: covidwho-1927596

ABSTRACT

BACKGROUND: During the COVID-19 pandemic, self-reported COVID-19 vaccination might facilitate rapid evaluations of vaccine effectiveness (VE) when source documentation (e.g., immunization information systems [IIS]) is not readily available. We evaluated the concordance of COVID-19 vaccination status ascertained by self-report versus source documentation and its impact on VE estimates. METHODS: Hospitalized adults (≥18 years) admitted to 18 U.S. medical centers March-June 2021 were enrolled, including COVID-19 cases and SARS-CoV-2 negative controls. Patients were interviewed about COVID-19 vaccination. Abstractors simultaneously searched IIS, medical records, and other sources for vaccination information. To compare vaccination status by self-report and documentation, we estimated percent agreement and unweighted kappa with 95% confidence intervals (CIs). We then calculated VE in preventing COVID-19 hospitalization of full vaccination (2 doses of mRNA product ≥14 days prior to illness onset) independently using data from self-report or source documentation. RESULTS: Of 2520 patients, 594 (24%) did not have self-reported vaccination information to assign vaccination group; these patients tended to be more severely ill. Among 1924 patients with both self-report and source documentation information, 95.0% (95% CI: 93.9-95.9%) agreement was observed, with a kappa of 0.9127 (95% CI: 0.9109-0.9145). VE was 86% (95% CI: 81-90%) by self-report data only and 85% (95% CI: 81-89%) by source documentation data only. CONCLUSIONS: Approximately one-quarter of hospitalized patients could not provide self-report COVID-19 vaccination status. Among patients with self-report information, there was high concordance with source documented status. Self-report may be a reasonable source of COVID-19 vaccination information for timely VE assessment for public health action.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , Documentation , Humans , Pandemics , RNA, Messenger , SARS-CoV-2 , Self Report , Vaccination , Vaccine Efficacy
19.
Pediatrics ; 150(3)2022 09 01.
Article in English | MEDLINE | ID: covidwho-1910743

ABSTRACT

OBJECTIVES: To evaluate risk factors for postdischarge sequelae in children and adolescents hospitalized for acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome in children (MIS-C). METHODS: Multicenter prospective cohort study conducted in 25 United States pediatric hospitals. Patients <21-years-old, hospitalized May 2020 to May 2021 for acute COVID-19 or MIS-C with follow-up 2 to 4 months after admission. We assessed readmissions, persistent symptoms or activity impairment, and new morbidities. Multivariable regression was used to calculate adjusted risk ratios (aRR) and 95% confidence intervals (CI). RESULTS: Of 358 eligible patients, 2 to 4 month survey data were available for 119 of 155 (76.8%) with acute COVID-19 and 160 of 203 (78.8%) with MIS-C. Thirteen (11%) patients with acute COVID-19 and 12 (8%) with MIS-C had a readmission. Thirty-two (26.9%) patients with acute COVID-19 had persistent symptoms (22.7%) or activity impairment (14.3%) and 48 (30.0%) with MIS-C had persistent symptoms (20.0%) or activity impairment (21.3%). For patients with acute COVID-19, persistent symptoms (aRR, 1.29 [95% CI, 1.04-1.59]) and activity impairment (aRR, 1.37 [95% CI, 1.06-1.78]) were associated with more organ systems involved. Patients with MIS-C and pre-existing respiratory conditions more frequently had persistent symptoms (aRR, 3.09 [95% CI, 1.55-6.14]) and those with obesity more frequently had activity impairment (aRR, 2.52 [95% CI, 1.35-4.69]). New morbidities were infrequent (9% COVID-19, 1% MIS-C). CONCLUSIONS: Over 1 in 4 children hospitalized with acute COVID-19 or MIS-C experienced persistent symptoms or activity impairment for at least 2 months. Patients with MIS-C and respiratory conditions or obesity are at higher risk of prolonged recovery.


Subject(s)
COVID-19 , Adolescent , Adult , Aftercare , COVID-19/complications , COVID-19/epidemiology , Child , Hospitalization , Humans , Obesity , Patient Discharge , Prospective Studies , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , United States/epidemiology , Young Adult
20.
ACR Open Rheumatol ; 4(9): 804-810, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1905771

ABSTRACT

OBJECTIVE: Two cohort studies in patients with multisystem inflammatory syndrome in children (MIS-C) demonstrated contrasting results regarding the benefit of initial immunomodulatory treatment with intravenous immunoglobulin (IVIG) alone versus IVIG and glucocorticoids. We sought to determine whether application of different MIS-C definitions and differing disease severity between cohorts underlay discrepant results. METHODS: The Overcoming COVID-19 Public Health Surveillance Registry (OC-19) included patients meeting the US Centers for Disease Control and Prevention (CDC) MIS-C definition, whereas the Best Available Treatment Study (BATS) applied the World Health Organization (WHO) definition. We applied the WHO definition to the OC-19 cohort and the CDC definition to the BATS cohort and determined the proportion that did not meet the alternate definition. We compared illness severity indicators between cohorts. RESULTS: Of 349 OC-19 patients, 9.5% did not meet the WHO definition. Of 350 BATS patients, 10.3% did not meet the CDC definition. Most organ system involvement was similar between the cohorts, but more OC-19 patients had WHO-defined cardiac involvement (87.1% vs 79.4%, P = 0.008). OC-19 patients were more often admitted to intensive care (61.0% vs 44.8%, P < 0.001) and more often received vasopressors or inotropes (39.5% vs 22.9%, P < 0.001) before immunomodulatory treatment. CONCLUSION: Greater illness severity and cardiovascular involvement in the OC-19 cohort compared with the BATS cohort, and not use of different MIS-C case definitions, may have contributed to differing study conclusions about optimal initial treatment for MIS-C. Disease severity should be considered in future MIS-C study designs and treatment recommendations to identify patients who would benefit from aggressive immunomodulatory treatment.

SELECTION OF CITATIONS
SEARCH DETAIL